FÍSICA GRACELI TENSORIAL QUÂNTICA.
equação Graceli quântica [] G* = = [ ] ω , , / T] / c [ [x,t] ] = |
equação Graceli tensorial quântica [1] [DR] = .= = |
= tensor energia momentum
= tensor quântico de Graceli.
equação Graceli tensorial quântica [2] [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
[DR] = =
GG [DR] = =
EQUAÇÃO QUÂNTICA TENSORIAL GRACELI.
[DR] = .=
GG [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
G [DR] = =
G [DR] = =
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
] ω , , =
Em física, uma quantização é um procedimento matemático que atribui um valor específico a um sistema físico; assim contrariando a ideia de que determinadas unidades, como energia e carga elétrica, eram continuas.
Definição formal[editar | editar código-fonte]
Concretamente dada a descrição hamiltoniana de um sistema clássico mediante uma variedade simplética pode ser definida[1] formalmente o processo de quantização como a construção de um espaço de Hilbert tal que ao conjunto de magnitudes físicas ou observáveis medíveis no sistema clássico se assinala um conjunto de observáveis quânticos ou operadores auto-adjuntos tais que:
- Os operadores de posição e seus momentos conjugados atuam irreduzivelmente sobre .
equação Graceli tensorial quântica [2] [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
Onde é a aplicação identidade sobre o espaço de Hilbert assinado ao sistema, é o parênteses de Poisson e é o comutador de operadores.
Pelo teorema de Stone-von Neumann a condição (5) implica que os graus de libertade de deslocamento nos obrigam a tomar e um operador é multiplicativo e outro derivativo. Assim usam-se a representação em forma de função de onda em termos das coordenadas espaciais:
- /
equação Graceli tensorial quântica [2] [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
Usa-se a representação em forma de função de onda em termos das coordenadas de momento conjugado:
- /
equação Graceli tensorial quântica [2]
[DR] = .= G
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
Sistemas quantizáveis[editar | editar código-fonte]
Um sistema hamiltoniano clássico definido sobre uma variedade simplética se chama quantizável se existe um -fibrado principal e uma 1-forma sobre , chamada variedade de quantização, tal que:
- é invariante sob a ação de
Um resultado recolhido em Steenrod 1951 implica que uma variedade é quantizável se a segunda classe de co-homologia satisfaz certa propriedade:
- é quantizável se e somente se ,
- /
equação Graceli tensorial quântica [2] [DR] = .= G + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
ou seja, a integral da forma simplética integrada sobre uma variedade compacta de dimensão 2 é um número inteiro multiplicado pela constante de Planck. É mais naqueles casos em que existe mais de um modo de quantizar um sistema clássico, as diferentes quantizações podem classificar-se de acordo com a forma de
A Regra de Born (também chamada de Lei de Born) é uma lei da física da mecânica quântica que nos dá a probabilidade que uma medição irá produzir um resultado num sistema quântico. Esta regra foi nomeada em homenagem do físico alemão Max Born.
A regra de Born é um dos princípios mais importantes da interpretação de Copenhaga da mecânica quântica. Houve muitas tentativas de obter esta regra a partir dos fundamentos da mecânica quântica, mas ainda não há resultados conclusivos.[1]
Definição[editar | editar código-fonte]
A regra de Born diz que se um observável corresponde a um operador adjunto com espectro discreto ele será medido num sistema com função de onda normalizada (veja Notação Bra-ket), então:
- O resultado da medição será um dos valores próprios de
- A probabilidade da medição de um valor próprio será dada por , onde é a projeção no espaço de correspondente à .
No caso onde o espectro de não é completamente discreto, o teorema espectral mostra a existência de uma certa medida espectral , que será a medida espectral de . Neste caso a probabilidade de resultado que a medição retornará se encontra num conjunto e será dada por .
- /
equação Graceli tensorial quântica [2]
[DR] = .= G
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
História[editar | editar código-fonte]
A regra de Born foi formulada num artigo de 1926.[2] Neste artigo, Born soluciona a equação de Schrödinger para um problema de dispersão e conclui que a regra de Born dá a única interpretação possível da solução. Em 1954, junto com Walther Bothe, Born foi agraciado com o Nobel de Física por este trabalho.[3] Mais tarde o matemático John von Neumann demonstrou aplicações da teoria espectral para a regra de Born em seu livro de 1932.[4]
Em física quântica, a regra de ouro de Fermi expressa a taxa de transição (probabilidade por unidade de tempo) de um auto-estado de um Hamiltoniano para um contínuo de estados, devido a uma perturbação , que pode depender do tempo. Seu nome é uma homenagem ao físico italiano Enrico Fermi.
Dado um auto-estado do Hamiltoniano não perturbado , a probabilidade de transição para um estado é dado em primeira ordem de teoria de perturbação por
- /
equação Graceli tensorial quântica [2]
[DR] = .= G
+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
sendo a densidade de estados finais.
Comentários
Postar um comentário